Acta Technica 62 (2017), No.5A, 63-72 © 2017 Institute of Thermomechanics CAS, v.v.i.

Repeat-hash collision detection
algorithm and map log sheet conflict
evading algorithm based on multi-core

PcC

TING ZHANG', CONG-CONG L1%, MING QIU?*

Abstract. Against the hash collision detection algorithm is easy to read and write different
address mapping to the same hash address, produce the problem such as "false conflict", puts
forward a Repeat-Hash collision detection algorithm, using hash method to calculate multiple hash
address, reduce unnecessary costs of rollback by the misjudgment in transaction. This paper ana-
lyzes consistency check of transaction and threads, gives the parallel algorithm and the application
example. The experimental results show that the algorithm can well reflect the transaction memory
collision detection in the actual operation process, it is an effective method to control the transac-
tion memory system parallelly. The traditional transactional memory system can only deal with
conflicts, but it is without the prevention of conflicts in advance. Thus, a conflict evading algo-
rithm based on MAP log sheet is proposed. Before the transaction starts, the possibility of conflict
occurrence can be predicted in accordance with the historic conflict situations, and the transaction
can be regulated according to the prediction result, so as to reduce its failure rate. The evading for
the read-write conflict between the transaction and thread is conducted along with the provision
of parallel algorithm and application examples. Experimental results show that the algorithm can
well reflect the actual operating procedure of the conflict evading of transaction memory, and it
is considered effective in realizing the parallel control and operation of the transactional memory
system.

Key words. Conflict detection algorithm, multicore pc, transactional memory, conflict
evading algorithm.

1School of Computer Science and Engineering, Xiangsihu College of Guangxi University for
Nationalities, Nanning 530008, China; e-mail: MAME2013@163.com

2College of mechanical and electrical engineering, Agricultural University of Hebei, Baoding,
071001, China; e-mail: hebaulcc@126.com

3Educational technology and information management center, Guangxi College of Education,
Nanning 530023, China

4Corresponding author: Ming Qiu; e-mail: 1040168586@qq.com

http://journal.it.cas.cz

MAME2013@163.com
hebaulcc@126.com
1040168586@qq.com

64 TING ZHANG, CONG-CONG LI, MING QIU

1. Introduction of Repeat-Hash Collision Detection
Algorithm

Currently, data sharing is realized by the multithreading parallel programming
design mainly through locks or semaphore. The inter-multithreading operation be-
comes slow due to competitive locks, or it is likely to cause deadlock, priority inver-
sion or other mistakes. To resolve shortcomings of the sharing data lock mechanism,
the replacement of the lock mechanism with software transactional memory (STM)
is initially proposed by Literature [1] in 1995. Later STM researches include DSTM
and RSTM models. In 2006, Ceze et al. come up with an optimization scheme
[2] which turns the computation of the transactional read-write operation address
into a value similar to Hash in order to carry out collision detection through value
contrast. In this way, the broadcast information amount on the bus is significantly
reduced, but it is possible to lead to fake collision. The BSTM model is put for-
ward by Literature [3]. In collision detection, the Hash table is taken as the data
structure when detecting the consistency of read-write data, so as to decrease the
search time in the data buffer. The simulation test indicates that the structure of
Hash table can help to reduce the search time in case there are plenty of shared
variables, so its performance is relatively advantageous. However, it is easy to result
in performance worsening due to the fake collision caused by collision detection of
the data structure. Thus, it is of great significance to improve the Hash collision
detection algorithm, so as to settle the parallel programming lock mechanism issue
of the multi-core PC effectively and give full play to the potential of multi-core PC.

2. Proposal of Hash collision detection algorithm and
problems in transactional memory

2.1. Ideology of the Hash collision detection algorithm in
transactional memory

Multi-items in transactional memory can be executed in parallel and visit the
sharing object simultaneously. If two transactions visit the same object at the same
time with the occurrence of the write-write operation or read-write operation, then
collision will take place because the consistency of data finally submitted is de-
stroyed.[4] The completion management strategy needs to be adopted in collisions
in order to select a transaction for further execution with the termination of other
transactions. Stopped transactions will be re-dispatched for execution at some sub-
sequent time point [5].

Collision detection of transactional memory is divided into the intra-transaction
data consistency detection and inter-transaction data consistency detection. Intra-
transaction data is consistent, because the address in the write-buffer is detected
first through the read-shared data operation, for example, the write-buffer address
is detected by the read-buffer in transaction 1 of Figure 1. In case there is the same
address, it will directly be read from the write-buffer, so as to ensure the intra-
transaction data consistency. Regarding the inter-transaction consistency detection,

REPEAT-HASH COLLISION DETECTION ALGORITHM 65

it is only needed to check the write-operation of submitted transactions and read-
operation of transactions that haven’t been submitted, as shown in Figure 2. The
specific flow of collision detection is:

(1)Read operation

It is searched whether the address of variable x to be read is contained in the
intra-transaction write-buffer. If the same address does exist, the latest data will be
read from the write-buffer. In Figure 1, the variable x has not been read or written
before, so its value 0 can be read from the corresponding actual memory address.

(2) Write operation

Before the write operation, it should be checked whether there is the same ad-
dress in the shared data address of the detection buffer in the bottom transaction
manager. If there is, the data should be updated, otherwise, new nodes should be
inserted in the buffer. After modification, the modified value 1 and the variable data
address &Adress should both be preserved in the write buffer, and they should not
be submitted until transactions are completed.

(3)Submission of the transaction application

After the read-write operation of shared memory, the submission operation will
be conducted for transactions. The submission right will be applied for from the
transaction manager which will then make the arbitration and allow the submission
of one transaction. Other transactions submitted will be in the waiting status, and
transactions that have not been applied for submission can continue to be executed.

(4) The transaction submission stage

Data in the write buffer is written into the corresponding actual physical memory
address by transaction 1 which has got the submission right, and the write-buffer is
copied to the detection buffer of the transaction manager at the same time, so that
the consistency check can be carried out for other transactions. In Figure 2, the
value of the variable x address in the shared memory is updated to 1, meanwhile,
the address and data of the variable x are also contained in the detection buffer of
the transaction manager.

read-write address. The data address and data content need to be preserved in the
read-write buffer, so the structure of each unit in Hash table includes three elements:
data address, data value, and pointer of the next element among synonyms. Among
them, the read-write address is the keyword of Hash table. By calculating some Hash
function, the read-write address can be mapped on the Hash address which helps to
compare the read-write addresses of transactions or threads. As shown in Figure 3,
the address R2 for read operation maps the same Hash address as the address W2
for write operation, so the same address 1 is read and written. Long address data
has turned to short Hash addresses via the Hash function computation with this
algorithm. Thus, the comparison time is shortened, and it is verified by experiments
of Literature [3] that the system performance can be improved significantly with this
algorithm in contrast with others.

66 TING ZHANG, CONG-CONG LI, MING QIU

Tranzaciion 1 Transaction n
Addr|Data| Adar Data Addr|Data| (Addr|Data|
L |
RAddsE) @ Riddg © |
T intra-srapustiion date |
= comvatagey duseton
Rnl-ku;q Weite-nutle Read-bulfer] |Wrie-butier
L
e i | ine et e Toe mdgtenn var w
I .u' i . AT
I
z
Caltwct.
buftes
Bottom Trankection Manager
I 1
1‘_" =0 Sharng Memoary
2 Read

Fig. 1. The read operation flow when the variable x=1

Transaction 1 Transaction n
Addr[Data| Adaripata | ||AddrData) ladar|Dats
Addr] @ MeAdd: 1 [i*'..ml 0 | WA)
H-muuﬂ-r; “Write butter | Mead-oufter] Write-butter
T |
b it '-r.ﬁ:.—..:.—[|' B
rite 2
| mwsnage by : o oAl L
| _"'71'._ =SS
lhj_h‘ 1 ‘ 1 2. Fond 1ne mansage of
Lonmialanty heck
i
Datect: -
Butfer
Botiom Transaction Manager
| X=1 Sharing Memery

Fig. 2. The write operation flow when the variable x=0

2.2. Proposal of problems

However, in contrast to the method of comparing actual addresses one by one,
the Hash collision detection way proposed by Literature [3] has collision risk, because
the same Hash address may be a result of calculating different keywords. According
to Figure 4, &Addl &Add2, but f(&Addl)= f(&Add2). In other words, there is
collision, thus resulting in “fake collision” between the read operation that has no

REPEAT-HASH COLLISION DETECTION ALGORITHM 67

address collision before and the submitted write operation. In this way, transactions
that should not have collision will roll back, causing unnecessary expenditure and
affecting the system efficiency. Hash collision cannot be totally avoided, but its
probability can be lowered as far as possible. For this, an improvement is made by
us in accordance with the Hash data structure.

Hash Table

!ﬁuddl Dala Pointer
R1 | | W1
laddrr (==L JNULL | —

(Addra 2 TNULL | W2

Rz
=&Addr1 ;hddfl x3 NLILL! =&Addr2

|Adgra | x4 | NULL
Rn | ‘ Wn

Addresses of
write bufher

Addreases of IAddrn | xn |NULL !
read aperation :

&Addril=&Addr2

Fig. 3. The principle of hash collision detection

Hash Table
Addr | Data |[Paointer
R1 W1
AddrT|= =L |NULL | _—
R2 Addra =2 NULL | T w2

¥ Addrd | ®3 | NULL

Addrd nd MULL
Rn Wn

Addresses of
write buffer

Addresses of Addrn xn NULL
read operation |

Fig. 4. "Fake collision" in hash collision detection

3. Repeated Hash collision detection in transactional memory
3.1. The mechanism of repeated Hash collision detection

Although the address comparison time is prolonged by the repeat-Hash algo-
rithm, the time and expenditure on re-execution is rather insignificant in contrast
to the rollback caused by misjudgment of numerous transactions.

In actual operation, the data size is large, the time N of multi-time Hash increases

68 TING ZHANG, CONG-CONG LI, MING QIU

as well, but the time N cannot be enlarged infinitely, otherwise, the processing rate
can be affected. If it is too small, the load capacity will be decreased. Researches
show that the search performance of the algorithm can be improved significantly by
the multi-function Hash table.

3.2. Repeat-Hash algorithm design

Hash collision detection refers to the fast comparison of read-write addresses of
various transactions (read-write addresses of threads) by taking them as the index.
If it turns out the read-write address of two transactions is the same, it indicates
there is collision and the competition management needs to be used to determine the
transactional execution and rollback. On this basis, the Hash function time is intro-
duced by Repeat-Hash algorithm, thus increasing the accuracy of data consistency
check.

It is assumed that N random integers are produced randomly, the address space
is m, the remainder use from prime method is taken to construct Hash function,
and the prime database includes all prime sets smaller than m. The repeat-Hash
algorithm is shown below:

Begin:

Input: define the maximum thread number, and generate N random numbers
randomly.

Output: the first list of output parameters is the thread id, the second list
is the Hash address, and the third is the collision times, and the operation time
(millisecond) is output as well.

Stepl: Use OMP NUM THREADS to define the maximum thread number in
the execution process.

Step 2: Take one random number as the keyword in each thread, then the prime
in the prime database is divided by this random number, and the obtained remainder
will be the Hash address.

Step3: In the debug output process, the Hash address positioned by each thread
is displayed. If the Hash address obtained by each thread differs, the keyword will
be written in the Hash table address.

Step4: If two or more calculated Hash addresses are the same in the thread,
continue to use the remainder of the prime number.

Stepd: If the re-calculated Hash address is different, return to Step 3 and write
the keyword in the Hash table address.

Step6: If the hash address obtained via N times of prime remainder use still
differs, it is considered the read-write address is the same in the thread and there is
collision, so there will be 1 more for the collision times.

REPEAT-HASH COLLISION DETECTION ALGORITHM 69

4. Experimental results and comparative analysis
4.1. Ezperimental platforms and parameters

The hardware platform of this experiment is: nanometer Core i5-3450 4-core
processor of Intel 22, 3.7GHz of CPU dominant frequency, and 8G memory. The
software platform is: Microsoft Windows 7 operation system, Microsoft Visual Stu-
dio 2010 (OpenMP) -+Intel Parallel Studio XE 2013, C++ language programming.
To reflect advantages of multi-core PC, an Intel N280 mononuclear process is selected
for comparative tests.

4.2. Ezxperimental results and analysis

4.2.1. Test results of linear Hash (LH), repeated-Hash by linear (RHL), and
repeated-Hash by Random (RHR) The method of linear Hash (LH) is adopted for
linear detection rehash. There are two methods of obtaining primes through the
repeated-Hash by linear, namely, the orderly prime repeated-Hash by linear (RHL)
and the random prime repeated-Hash by random (RHR). According to following
test results, each data is a mean value calculated by averaging the test results for
20 times, and test results are shown in Table 1:

Table 1. Test results of LH, RHL and RHR programs

4-core PC opera- Mononuclear
tion result PC opera-
tion result
Algorithm Average Maximm Minimum | Operation | Operation
name circu- circu- circu- time / ms | time / ms
lation lation lation
time time time
Linear de- | 3190596 3258442 3123751 4 17.3
tection Hash
(LH)
Orderly prime | 37911624 22256228 552926 7 72.5
repeated-Hash
(RHL)
Random prime | 366065 408111 189297 13 104.7
repeated-Hash
(RHR)

In the above three algorithms of linear tests, the operation on multi-core PC
is obviously faster than that on the mononuclear PC, embodying the advantage
of multi-core. The operation time of linear Hash (LH) is the shortest, but the
average circulation time of the random prime (RHR) is less than 1 magnitude order
compared to the linear hash (LH), that is, it is 10 times of circulation less. It
suggests that the average access-memory time can be clearly reduced with the RHR
algorithm, thus reflecting the advantage of addressing. As for the order prime (RHL)

70 TING ZHANG, CONG-CONG LI, MING QIU

method that constructs Hash function via orderly prime extraction, there are two
magnitude orders between the maximum circulation time and the minimum one,
indicating the positioning performance of the orderly prime is unstable. When it is
lucky, the circulation time will be small, on the contrary, 100 times of circulation
may be needed. Better Hash performance is manifested with the random prime
(RHR) algorithm with conducts further random selection on the basis of random
calculation, so as to improve the overall algorithm performance significantly. Next,
the random prime (RHR) method will be parallelized.

First, through the build-in performance analysis tool of Microsoft Visual Studio
2010, the performance analysis for RHR algorithm is conducted. Figure 5 shows
the CPU occupation analysis report of the random prime (RHR) algorithm, and the
function call time is one of the standards to evaluate the performance. The more
time it needs for call, it is more likely to become the performance bottleneck. The
code section with more time consumption in the program is analyzed in Table 2,
and the next step of parallelized rewriting is conducted.

130 10

0
e
B= a'I-~J

Time/(s) Time/(s)
(a) CPU occupation analysis in 4-core PC (b) CPU occupation analysis in 1-core PC

Fig. 5. The analytical report of cpu occupation (use rate) with the random prime
(rhr) algorithm

Table 2. Performance analysis of the random prime (rhr) algorithm

Function name Non- Monopolized| Non-
monopolized sample monopolized | Monopolized
sample number | number sample per- | sample per-
centage centage
__main 21 0 100 0
_rand 2 2 9.52 9.52
hash(int *,int) 4 0 19.5 0
hashMap1(int(*)) | 7 0 33.3 0
ran(int) 3 2 14.29 9.52

4.2.2. Test results of parallelized repeated-hash (rhr) OpenMP is used to com-
pile the guiding statement and add “#pragma omp parallel for” before the paral-

REPEAT-HASH COLLISION DETECTION ALGORITHM 71

leled statement. It is defined omp get thread num(), and the used thread number
is output. Through omp set num_threads (THREAD NUM), the thread num-
ber is set in the subsequent paralleled zone. The paralleled part is executed by n
threads, and the size n is realized by setting the value of the environmental variable
omp num threads.
Here, n=4, n=8, and n=16 are set in turn, and 3, 7 and 15 threads are used
at most with the paralleled random prime (RHR) algorithm, as shown in Figure 6.
The utilization rate is higher than 75%.
3918===21682===139469 1 number -=3938===207864
number = 15
75===207898

Thread number = 3

2463 = 781===139476

Thread number = 3

Thread number = 15

(a) 4 threads (b) 8 threads ()16 threads

Fig. 6. Thread use conditions

When the thread number is 2, 4, 8 and 16, the operation time of the paralleled
random prime (RHR) will be shown as Table 3:

Table 3. Performance analysis of the paralleled random prime (RHR) algorithm

Thread num- | Operation time of the | Operation time of the | Speed-up

ber paralleled random prime | linear random prime al- | ratio
algorithm / ms gorithm / ms

2 threads 12.3 13 1.06

4 threads 11 13 1.18

8 threads 10.1 13 1.29

16 threads 9.7 13 1.34

When the thread number is n=2, 4, 8 and 16, the thread collision of paralleled
RHR algorithm is shown in Figure 4:

Collision Times

)
&0
air - N
@ Collisids Tires
: . I
thread # thread

4 theead 1 L& thread

Fig. 7. Test results of the paralleled RHR program

72 TING ZHANG, CONG-CONG LI, MING QIU

4.2.8. Result analysis Seen from Table 3 and Table 4, when the thread number
increases from 2 to 16 after parallelizing the random prime (RHR), the more threads
there are, the shorter the operation time will be, but the collision times will increase
dramatically. It implies that the inter-thread collision occurrence probability will be
larger with the increase of the thread number. The algorithm advantage is reflected
after parallelization, as shown in Table 3. The average operation time of the par-
alleled random prime (RHR) is 4ms larger than that of linear random prime (LH),
and the maximum speed-up ratio is up tol.34, indicating great rate enhancement.

By making use of shorter Hash values to express the read-write address set, Hash
collision detection algorithm is a very promising collision detection design scheme
in transactional memory system. With the introduction of multiple Hash functions
for many times, the accuracy of comparing multi-thread read-write addresses can be
improved via the increase of re-constructing Hash function time N with the repeat-
Hash algorithm. In this way, less collision can be produced when detecting large data
sizes, thus reaching the purpose of parallelized settlement of application problems.

References

[1] M.F.SPEAR, V.J. MARATHE, W.N.SCHERER, M.L.ScoTT: Conflict Detection
and Validation Strategies for Software Transactional Memory, Distributed Comput-
ing. Lecture Notes in Computer Science 4167 (2006).

[2] B. H. BLoom: Time Trade-offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM (1970), 422-426.

[3] Y.P.KaNgG, Y.L. TaN, C. X. L1, Y. R. Yu: The optimization design of collision de-
tection for barrage games. Journal of Communication and Computer 6 (2009), No. 11,
8-11.

[4] G. ABBAs, N.Asir, H. GRAHN: Performance Tradeoffs in Software Transactional
Memory. Master Thesis Computer Science Thesis (2010).

[5] J. C.FrANK: Adaptive software transactional memory: dynamic contention manage-
ment. Clinical Pediatrics 21 (2008), No. 11, 4427-4437.

[6] A.Barros, L.M.PiNHO, P.M.Yowms: Non-preemptive and SRP-based fully-
preemptive scheduling of real-time Software Transactional Memory. Journal of Systems
Architecture Sciences 61 (2015), No. 10, 553-566.

[7] M. M. WALtuLLAH, P. STENSTROM: Removal of Conflicts in Hardware Transactional
Memory Systems. International Journal of Parallel Programming 42 (2014), No.1,
198-218.

[8] W. M. YaN, W.M. Wu: Data Structure (C-Language). JTsinghua (2013).

[9] C.S. Ananian, K. Asanovic, B. C. KuszmauL: Unbounded Transactional Memory.
IEEE Micro (2006).

[10] K. MOORE, J. BoBBA, MORAVANM, LOGTM: log-based transactional memory. High-
Performance Computer Architecture (2006), 254-265.

Received November 16, 2017

	Ting Zhang, Cong-Cong Li, Ming Qiu: Repeat-hash collision detection algorithm and map log sheet conflict evading algorithm based on multi-core pc
	Introduction of Repeat-Hash Collision Detection Algorithm
	Proposal of Hash collision detection algorithm and problems in transactional memory
	Repeated Hash collision detection in transactional memory
	Experimental results and comparative analysis

